Total marks – 120 Attempt Question 1-8

All questions are of equal value

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

Question 1 (15 marks)

Marks

(a) Find

(i)
$$\int \frac{\cos \theta}{\sin^5 \theta} d\theta$$

(ii)
$$\int \frac{dx}{x^2 + 2x + 2}$$

(b) Use the substitution
$$t = \tan \frac{\theta}{2}$$
 to find $\int \frac{dx}{5 + 4\cos x + 3\sin x}$

(c) Use the substitution
$$u = -x$$
 to evaluate
$$\int_{-1}^{1} \frac{dx}{e^x + 1}$$

(d) Evaluate the following definite integrals:

$$\int_0^1 \cos^{-1} x \, dx$$

(ii)
$$\int_{1}^{2} x (\ln x)^2 dx$$

Question 2 (15 marks) Start a new booklet

- (a) If z = 3 2i mark clearly on an Argand diagram the points represented by,
 - (i) 2*z*
 - (ii) -2iz
- (b) z is a complex number such that arg $z = \frac{\pi}{3}$ and $|z| \le 2$.
 - (i) Sketch the locus of the point P representing z in the Argand diagram. 2
 - (ii) Find the possible values of the principal argument of z-1 for z on this locus.

(c)

In the Argand diagram, vectors \overrightarrow{OA} and \overrightarrow{OB} represent the complex numbers $z_1 = 2\left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$ and $z_2 = 2\left(\cos\frac{7\pi}{15} + i\sin\frac{7\pi}{15}\right)$ respectively.

- (i) Show that $\triangle OAB$ is equilateral 3
- (ii) Explain why $z_2 z_1$ is equal to z_2 rotated by $\frac{\pi}{3}$ radians in a clockwise direction
- (iii) Express $z_2 z_1$ in modulus-argument form.

Question 3 (15 marks) Start a new booklet

- (a) The polynomial $p(x) = x^4 2x^3 + 2x 1$ has a root of multiplicity 3. Find this root and hence factorise p(x)
- (b) Sketch the curve $y^2 = x^2 (1 x^2)$ clearly showing all relevant details. 6

The diagram shows the graph of the function $f(x) = \sqrt{x} - 2$. On separate diagrams (each of half a page) sketch the following graphs, showing clearly any intercepts on the coordinate axes and the equations of any asymptotes:

$$(i) y = |f(x)|$$

(ii)
$$y = [f(x)]^2$$

(iii)
$$y = \frac{1}{f(x)}$$

(iv)
$$y = \ln f(x)$$

Question 4 (15 marks) Start a new booklet

(a) A and B are two points on a circle. Tangents at A and B meet at C. A third tangent cuts CA and CB in P and Q respectively, as shown in the diagram. Show that the perimeter of ΔCPQ is independent of PQ.

- (b) The polynomial P(x) leaves a remainder of 9 when divided by (x-2) and a remainder of 4 when divided by (x-3). Find the remainder when P(x) is divided by (x-2)(x-3).
- (c) The polynomial $P(x) = x^4 + 3x^3 + 6x^2 + 12x + 8$ has one root 2*i*. **4** Find all the roots of P(x).
- (d) If α , β are the roots of the equation $x^2 px + q = 0$ and $S_n = \alpha^n + \beta^n$ where n is a positive integer, show that $S_{n+2} pS_{n+1} + qS_n = 0$ Hence, or otherwise find S_3 , S_4 in terms of p, q.

Question 5 (15 marks) Start a new booklet

- (a) $P\left(3p, \frac{3}{p}\right)$ and $Q\left(3q, \frac{3}{q}\right)$ are points on different branches of the hyperbola xy = 9.
 - (i) Find the equation of the tangent at *P*. 2
 - (ii) Find the point of intersection, T, of the tangents at P and Q.
 - (iii) If the chord PQ passes through the point (0,2), find the locus of T.
- (b) The region bounded by the graphs of $y = x^2$ and y = x + 2 is revolved around the line x = 3. Derive the volume of the resulting solid as a definite integral. **Do not calculate the value of this integral**.
- (c) A solid has, as its base, the circular region in the *xy*-plane bounded by the graph of $x^2 + y^2 = a^2$, where a > 0. If every cross-section by a plane perpendicular to the *x*-axis is an equilateral triangle, with one side in the base, show that the volume of the solid is $\frac{4\sqrt{3}}{3}a^3$ units³.

1

Question 6 (15 marks) Start a new booklet

(a) A particle of mass m moves in a straight line away from a fixed point O in the line, such that at time t its displacement from O is x and its velocity is v. At time t = 0, x = 1 and v = 0. Subsequently, the only force acting on the particle is one of magnitude $m \frac{k}{x^2}$, where k is a positive constant in a direction away from O. Show that v cannot exceed $\sqrt{(2k)}$.

A bowl is formed by rotating the hyperbola $y^2 - x^2 = 1$ for $1 \le y \le 5$ about the y axis. A particle P of mass m moves around the inner surface of the bowl in a horizontal circle with constant angular velocity ω .

- (i) Show that if the radius of the circle in which *P* moves is *r*, then the normal to the surface at *P* makes an angle θ with the horizontal as shown, where $\tan \theta = \frac{\sqrt{1+r^2}}{r}$.
- (ii) Draw a diagram showing the forces acting on P.
- (iii) By resolving these forces in the horizontal and vertical directions show that $r = \frac{\sqrt{g^2 \omega^4}}{\omega^2}$ and the normal reaction $N = m\sqrt{2g^2 \omega^4}$
- (iv) Since *P* must be in contact with the surface of the bowl and the radius must be positive, prove $\sqrt{\frac{g}{5}} \le \omega \le \sqrt{g}$.

Question 7 (15 marks) Start a new booklet

- a) i) Expand (2+i)(3+i)
 - ii) By considering the arguments of each side, or otherwise show that $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$
 - iii) By first expanding $(p+q+i)(p^2+pq+1+iq)$ derive $\tan^{-1}\left(\frac{1}{p+q}\right) + \tan^{-1}\left(\frac{q}{p^2+pq+1}\right) = \tan^{-1}\left(\frac{1}{p}\right)$
- b) i) Prove, by Mathematical Induction, that $\sin \theta = 2^n \cos \frac{\theta}{2} \cos \frac{\theta}{4} \cos \frac{\theta}{2^n} \sin \frac{\theta}{2^n} \text{ for any positive integer } n$
 - ii) Hence show that $\frac{\sin \theta}{\theta} = \cos \frac{\theta}{2} \cos \frac{\theta}{4} \cos \left(\frac{\theta}{2^n}\right) \frac{\sin \left(\frac{\theta}{2^n}\right)}{\left(\frac{\theta}{2^n}\right)}$
 - iii) Hence find $\lim_{n\to\infty} \left(\frac{\sin\theta}{\theta}\right)$
 - iv) Using \prod as the product of terms, show that when $\theta = \frac{\pi}{2}$ $\prod_{k=2}^{\infty} \cos\left(\frac{\pi}{2^k}\right) = \frac{2}{\pi}$
 - v) Hence show, by applying the half angle formula for $\cos\left(\frac{\theta}{2}\right)$ $\frac{2}{\pi} = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2+\sqrt{2}}}{2} \times \frac{\sqrt{2+\sqrt{2}+\sqrt{2}}}{2} \times \dots$

Question 8 (15 marks) Start a new booklet

(a) The ellipse
$$\mathcal{E}: \left(\frac{x}{5}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$$
 has foci $S(4,0)$ and $S'(-4,0)$.

- (i) Sketch the ellipse \mathcal{E} indicating its foci S, S' and its directrices.
- (ii) Find the tangent at $P(x_1, y_1)$ on the ellipse \mathcal{E} .
- (iii) The line joining $P(x_1, y_1)$ to $Q(x_2, y_2)$ passes through S. Show that $4(y_2 y_1) = x_1 y_2 x_2 y_1.$
- (iv) If it is also known that $Q(x_2, y_2)$ lies on \mathcal{E} find the point of intersection of the tangents at P and Q
- (v) By using the result in (iii) show the tangents at *P* and *Q* intersect on the directrix corresponding to *S*.

(b)
$$I_n = \int_1^e (1 - \ln x)^n dx$$
, $n = 1, 2, 3, ...$

- (i) Show $I_n = -1 + nI_{n-1}$, n = 1, 2, 3, ...
- (ii) Hence evaluate $\int_{1}^{e} (1 \ln x)^{3} dx$.
- (iii) Show that $\frac{I_n}{n!} = e \sum_{r=0}^{n} \frac{1}{r!}$, n = 1, 2, 3, ...

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a \neq 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $ln x = log_e x, x > 0$

Solutions

Question 1

(a) (i)
$$u = \sin \theta, \quad du = \cos \theta d\theta$$

$$\int \frac{du}{u^5} = -\frac{1}{4}u^{-4} + c$$

$$= -\frac{1}{4}\sin^{-4}\theta + c$$

(ii)
$$\int \frac{dx}{(x+1)^2 + 1} = \tan^{-1}(x+1) + c$$

(b)
$$t = \tan \frac{x}{2}$$
, $\therefore \frac{dt}{dx} = \frac{1}{2} \sec^2 \frac{x}{2} = \frac{1}{2} (1 + t^2)$
 $\sin x = \frac{2t}{1 + t^2}$, $\cos x = \frac{1 - t^2}{1 + t^2}$

$$\int \frac{\frac{2dt}{1+t^2}}{5 + \frac{4(1-t^2)}{1+t^2} + \frac{6t}{1+t^2}}$$

$$= \int \frac{2dt}{t^2 + 6t + 9} = \int \frac{2dt}{(t+3)^2}$$

$$= 2(t+3)^{-1} + c$$

$$=\frac{-2}{\tan\frac{x}{2}+3}+c$$

(c)
$$u = -x, -du = dx$$

When x = -1, u = 1 and when x = 1, u = -1

$$\int_{1}^{-1} \frac{-du}{e^{-u} + 1} = \int_{-1}^{1} \frac{du}{e^{-u} + 1} = \int_{-1}^{1} \frac{du}{\frac{1}{e^{u}} + 1} = \int_{-1}^{1} \frac{e^{u} du}{1 + e^{u}}$$

$$= \left[\ln\left(e^{u} + 1\right)\right]_{-1}^{1} = \ln\frac{e + 1}{\frac{1}{e} + 1} = \ln e = 1$$

$$d(x) = \int_{0}^{1} \cos^{-1} x \frac{d}{dx}(x) dx = x \cos^{-1} x \Big]_{0}^{1} - \int_{0}^{1} \frac{-x}{\sqrt{1 - x^{2}}} dx$$
$$= 0 - \frac{1}{2} \int_{0}^{1} \frac{-2x}{\sqrt{1 - x^{2}}} dx = \sqrt{1 - x^{2}} \Big]_{0}^{1} = 1$$

OR

Area=
$$\int_{0}^{\pi/2} \sin y \, dy = \left[-\cos y\right]_{0}^{\pi/2} = 1$$

(ii)
$$\left[\frac{1}{2} x^2 (\ln x)^2 \right]_1^2 - \int_1^2 \frac{1}{2} x^2 \cdot 2 \cdot \frac{1}{x} \ln x \, dx$$

$$= 2 (\ln 2)^2 - \int_1^2 x \ln x \, dx$$

$$= 2(\ln 2)^{2} - \left[\frac{1}{2}x^{2} \cdot \ln x\right]_{1}^{2} + \int_{1}^{2}x^{2} \cdot \frac{1}{x} dx$$

$$= 2(\ln 2)^{2} - 2\ln 2 + \left[\frac{1}{4}x^{2}\right]_{1}^{2}$$

$$= 2(\ln 2)^{2} - 2\ln 2 + \frac{3}{4}$$

Question 2

(a)

(ii)
$$\frac{\pi}{2} \le \arg(z-1) < \pi$$

(i)
$$\therefore \arg \angle AOB = \arg z_1 - \arg z_2 = \frac{4\pi}{5} - \frac{7\pi}{15} = \frac{\pi}{3}$$

$$OA = OB = 2$$

Since Triangle is Isosceles and the included angle is $\pi/3$

 $\therefore \triangle OAB$ is equilateral.

(ii) The vector \overrightarrow{AB} represents $z_2 - z_1$. Now, \overrightarrow{AB} is a clockwise rotation of \overrightarrow{OB} by $\frac{\pi}{3}$ since |AB| = |OB| and $\angle AOB = \frac{\pi}{3}$

iii)
$$\therefore z_2 - z_1 = z_2 \left(\cos \frac{-\pi}{3} + i \sin \frac{-\pi}{3} \right)$$

$$= 2 \left(\cos \frac{7\pi}{15} + i \sin \frac{7\pi}{15} \right) \left(\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right)$$

$$= 2 \left(\cos \frac{2\pi}{15} + i \sin \frac{2\pi}{15} \right)$$

Question 3

(a)
$$p(x) = x^4 - 2x^3 + 2x - 1$$

 $\therefore p'(x) = 4x^3 - 6x^2 + 2$
 $\therefore p''(x) = 12x^2 - 12x = 0$
when $x = 0, 1$
 $p'(1) = 4(1)^3 - 6(1)^2 + 2 = 0$
and $p(1) = 1 - 2 + 2 - 1 = 0$
 $\therefore x = 1$ is the triple root
 $\sum \alpha = +2 = 1 + 1 + 1 + \alpha$
 \therefore the fourth root $\alpha = -1$
 \therefore roots are 1, 1, 1, -1.

b)
$$y^2 = x^2 (1 - x^2)$$

Since $y \ge 0$ $x^2 \le 1 \Rightarrow |x| \le 1$
when $y = 0$ $x = 0, \pm 1$

$$y \frac{dy}{dx} = 2x - 4x^3 = 2x(1 - 2x^2)$$

$$\therefore \frac{dy}{dx} = \frac{2x(1 - 2x^2)}{\pm \sqrt{x^2(1 - x^2)}} = \frac{2(1 - 2x^2)}{\pm \sqrt{(1 - x^2)}}$$

$$= 0 \text{ when } x = \pm \frac{1}{\sqrt{2}} \Rightarrow y = \pm \frac{1}{2}$$

when $x \to \pm 1$ $\frac{dy}{dx} \to \infty$: vertical tangent

at x = 0 $\frac{dy}{dx} = \pm 1$: tangents inclined at ± 45

(ii)
$$y = [f(x)]^2$$

(iii)
$$y = \frac{1}{f(x)}$$

(a) Perimeter of $\Delta CPQ = CP + CQ + PQ$

But PQ = AP + BQ (tangents drawn from P are of equal length and (tangents drawn from Q are of equal length)

Perimeter of $\Delta CPQ = CP + AP + CQ + BQ = CA + CB$

Which is independent of PQ.

b)
$$P(2) = 9, P(3) = 4$$

$$P(x) = Q(x).(x-2)(x-3) + R(x)$$
, where $R(x) = ax + b$

$$P(2) = 0 + 2a + b = 9$$

$$P(3) = 0 + 3a + b = 4$$

$$a = -5, b = 19$$

Remainder is 19-5x

Since all coefficients are real if 2i is a root, so is the conjugate -2iLet other 2 roots be α, β $\therefore 2i + -2i + \alpha + \beta = \alpha + \beta = -3$ $\prod \alpha = 4\alpha\beta = 8$ solve simultaneously $4\alpha(-3 - \alpha) = -12\alpha - 4\alpha^2 = 8$ $\Rightarrow \alpha^2 + 3\alpha + 2 = 0 \Rightarrow \alpha = -1, -2$ $\therefore P(x) = (x - 2i)(x + 2i)(x + 1)(x + 2)$ d)

d)
$$x^2 - px + q = 0$$
, if roots are α, β
 $\alpha^2 - p\alpha + q = 0$ and $\beta^2 - p\beta + q = 0 \Rightarrow \alpha^2 + \beta^2 = p(\alpha + \beta) - 2q = p^2 - 2q = S_2$
also $\alpha^n (\alpha^2 - p\alpha + q) = 0$ $\beta^n (\beta^2 - p\beta + q) = 0$
i.e. $\alpha^{n+2} - p\alpha^{n+1} + q\alpha^n = 0$ $\beta^{n+2} - p\beta^{n+1} + q\beta^n = 0$ add these results $S_{n+2} - pS_{n+1} + qS_n = 0$
 $S_3 - pS_2 + qS_1 = S_3 - p(p^2 - 2q) + q(p) = 0$ $\Rightarrow S_3 = p^3 - 3pq$
 $S_4 - pS_3 + qS_2 = S_4 - p(p^3 - 3pq) + q(p^2 - 2q) = 0$
 $S_4 = p^4 - 4p^2q + 2q^2$

Question 5

(a) (i)
$$x \frac{dy}{dx} + y = 0$$
, $\therefore \frac{dy}{dx} = \frac{-y}{x}$

At P,
$$\frac{dy}{dx} = \frac{-\frac{3}{p}}{3p} = -\frac{1}{p^2}$$

Required equation:
$$y - \frac{3}{p} = -\frac{1}{p}(x - 3p)$$

Which gives
$$x + p^2 y = 6p$$

(ii) tangent at
$$P$$
 $x + p^2y = 6p$

Tangent at
$$Q$$
 $x+q^2y=6q$

When solved simultaneously, we get the coordinates of T:

$$\left(\frac{6pq}{p+q},\frac{6}{p+q}\right)$$

(iii)
$$m_{PQ} = \frac{\frac{3}{p} - \frac{3}{q}}{3p - 3q} = -\frac{1}{pq}$$

Equation PQ:
$$y - \frac{3}{p} = -\frac{1}{pq}(x - 3p)$$

Now, when x = 0, y = 2

$$\therefore \frac{p+q}{pq} = \frac{2}{3} \text{ or } p+q = \frac{2pq}{3}$$

At
$$T$$
, $x = \frac{6pq}{p+q} = \frac{6pq}{2pq/3} = 9$

Therefore the locus is x = 9

b)

To find points of intersection:

$$x^2 = x + 2$$
, $\therefore x = -1, 2$

Consider a typical strip

Rotate the strip to form a shell. The volume of the shell is given by

$$\delta V = 2\pi r h \cdot \delta x$$
, where $r = 3 - x$ and $h = y_1 - y_2 = x + 2 - x^2$

$$V \approx \sum_{x=-1}^{x=2} 2\pi (3-x)(x+2-x^2)\delta x$$

$$V = \lim_{\delta x \to 0} \sum_{x=-1}^{x=2} 2\pi (3-x) (x+2-x^2) \delta x$$

$$= \int_{-1}^{2} 2\pi (3-x)(x+2-x^2) dx$$

$$OR = \int_{-1}^{2} \pi \left(y^2 - 11y + 6\sqrt{y} + 16 \right) dy$$

Consider a typical slice of width δx .

$$\delta V = \frac{1}{2} 2y.2y.\sin 60^{\circ}.\delta x = y^2 \sqrt{3}.\delta x$$

$$V \approx \sum_{x=-a}^{x=a} y^2 \sqrt{3}.\delta x$$

$$V = \lim_{\delta x \to 0} \sum_{x=-a}^{x=a} y^2 \sqrt{3}.\delta x = \lim_{\delta x \to 0} \sum_{x=-a}^{x=a} (a^2 - x^2) \sqrt{3}.\delta x$$

$$=\sqrt{3}\int_{-a}^{a}\left(a^2-x^2\right)dx$$

$$=2\sqrt{3}\int\limits_{0}^{a}\left(a^{2}-x^{2}\right) dx$$

$$=2\sqrt{3}\left[a^{2}x-\frac{x^{3}}{3}\right]_{0}^{a}$$

$$=\frac{4\sqrt{3}}{3}a^3$$

Question 6

(a) Choose the initial direction as positive

$$\ddot{x} = \frac{k}{x^2}, \ k > 0$$

$$v\frac{dv}{dx} = \frac{k}{x^2} \Rightarrow vdv = \frac{k}{x^2}dx$$

$$\frac{1}{2}v^2 = -\frac{k}{x} + c$$
, where c is constant

Now, when $x = 1, v = 0 \Rightarrow c = k$

$$\therefore v^2 = 2k \left(1 - \frac{1}{x}\right)$$

Now,
$$x \ge 1$$
 : $0 \le 1 - \frac{1}{x} < 1$

$$\therefore 0 \le v^2 < 2k$$

Hence, v cannot exceed $\sqrt{2k}$

(b) (i)
$$y^2 - x^2 = 1 \Rightarrow 2y \frac{dy}{dx} - 2x = 0 \Rightarrow \frac{dy}{dx} = \frac{x}{y}$$

At P,
$$\frac{dy}{dx} = \frac{r}{\sqrt{1+r^2}}$$

Hence, the gradient of the normal at *P* is $\frac{-\sqrt{1+r^2}}{r}$

Now, the gradient of the normal is the tangent of the angle made with the 'positive' *x* axis.

$$\therefore \tan(180^\circ - \theta) = \frac{-\sqrt{1+r^2}}{r}$$

$$\therefore \tan \theta = \frac{\sqrt{1+r^2}}{r}$$

(iii) Resolve forces

Horizontally

Vertically

$$mr\omega^2 = N\cos\theta$$

 $mg = N \sin \theta$

$$\therefore \tan \theta = \frac{g}{r\omega^2} = \frac{\sqrt{1+r^2}}{r} \text{ from part (i)}$$

$$1 + r^2 = \frac{g^2}{\omega^4} \Rightarrow r = \frac{\sqrt{g^2 - \omega^4}}{\omega^2}$$

Now, $\cos^2 \theta + \sin^2 \theta = 1$

$$N^{2} = m^{2}r^{2}\omega^{4} + m^{2}g^{2} = m^{2}\frac{g^{2} - \omega^{4}}{\omega^{4}}\omega^{4} + m^{2}g^{2}$$

$$= m^2 \left(2g^2 - \omega^4 \right)$$

$$\therefore N = m\sqrt{(2g^2 - \omega^4)}$$

(iv)
$$r = \frac{\sqrt{g^2 - \omega^4}}{\omega^2} \text{ and } r > 0$$

$$\therefore g^2 > \omega^4$$

But
$$N > 0$$
 $\therefore 2g^2 > \omega^4$

Both these conditions exist if $g > \omega^2$

Note:
$$y \le 5 \Rightarrow y^2 \le 25 \Rightarrow 1 + r^2 \le 25$$

$$\therefore \frac{g^2}{\omega^4} > 25 \Longrightarrow \omega \ge \sqrt{\frac{g}{5}}$$

$$\therefore \sqrt{\frac{g}{5}} \le \omega \le \sqrt{g}$$

THGS Extension 2 Trial 2010 Solutions

Question 7

a) i)
$$(2+i)(3+i) = 6-1+2i+3i = 5+5i$$

ii)
$$\therefore \arg(2+i)(3+i) = \arg(5+5i)$$

 $\therefore \arg(2+i) + \arg(3+i) = \tan^{-1} 1$
 $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \frac{\pi}{4}$

a) iii)
$$(p+q+i)(p^2+pq+1+qi)$$

$$= p^3 + p^2q + p + pqi + p^2q + pq^2 + q + q^2i + p^2i + pqi + i - q$$

$$= p(p^2 + 2pq + q^2 + 1) + i(p^2 + 2pq + q^2 + 1)$$

$$\therefore \arg(p+q+i)(p^2 + pq+1+qi) = \arg(p(p^2 + 2pq + q^2 + 1) + i(p^2 + 2pq + q^2 + 1))$$

$$\therefore \tan^{-1} \frac{1}{p+q} + \tan^{-1} \frac{q}{p^2 + pq + 1} = \tan^{-1} \frac{1}{p} \text{ as required}$$

b)i) let
$$n = 1$$
 LHS = $\sin \theta$ RHS = $2\cos \frac{\theta}{2} \sin \frac{\theta}{2} = \sin \theta$. true when $n = 1$.
assume true when $n = k$ i.e. $\sin \theta = 2^k \cos \frac{\theta}{2} \cos \frac{\theta}{4} ... \cos \frac{\theta}{2^k} \sin \frac{\theta}{2^k}$
now $\sin \frac{\theta}{2^k} = 2\cos \frac{\theta}{2^{k+1}} \sin \frac{\theta}{2^{k+1}}$ substitute in assumption
thus $\sin \theta = 2^k \cos \frac{\theta}{2} \cos \frac{\theta}{4} ... \cos \frac{\theta}{2^k} \times 2\cos \frac{\theta}{2^{k+1}} \sin \frac{\theta}{2^{k+1}}$
 $\Rightarrow \sin \theta = 2^{k+1} \cos \frac{\theta}{2} \cos \frac{\theta}{4} ... \cos \frac{\theta}{2^k} \cos \frac{\theta}{2^{k+1}} \sin \frac{\theta}{2^{k+1}}$

 \therefore if the result is true for n = k it is also true for n = k + 1

but it is true for n = 1 : it is true for n = 1 + 1 = 2 and so on for all positive integer n = 1 + 1 = 2

b)ii) Divide both sides by θ

thus
$$\frac{\sin \theta}{\theta} = \cos \frac{\theta}{2} \cos \frac{\theta}{4} ... \cos \frac{\theta}{2^n} \sin \left(\frac{\frac{\theta}{2^n}}{\frac{\theta}{2^n}} \right)$$

$$iii$$
) as $n \to \infty$ $\frac{\theta}{2^n} \to 0$ $\therefore \lim_{n \to \infty} \sin \left(\frac{\frac{\theta}{2^n}}{\frac{\theta}{2^n}} \right) = 1$

$$\lim_{n\to\infty}\frac{\sin\theta}{\theta}=\cos\frac{\theta}{2}\cos\frac{\theta}{4}...\cos\frac{\theta}{2^n}\times 1$$

b)iii) Let
$$\theta = \frac{\pi}{2}$$

$$\lim_{n\to\infty} \frac{\sin\theta}{\theta} = \frac{1}{\pi/2} = \cos\frac{\pi/2}{2}\cos\frac{\pi/2}{4}...\cos\frac{\pi/2}{2^n} = \prod_{k=2}^{\infty} \cos\frac{\pi}{2^k} = \frac{2}{\pi}$$

$$b)iv) :: \frac{2}{\pi} = \cos\frac{\pi}{4}\cos\frac{\pi}{8}\cos\frac{\pi}{16}...$$

Now
$$\cos^2 \theta = \frac{1}{2} (1 + \cos 2\theta) \Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \sqrt{1 + \cos 2\theta}$$

Now
$$\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$\therefore \cos \frac{\pi}{8} = \frac{1}{\sqrt{2}} \sqrt{1 + \cos \frac{\pi}{4}} = \frac{1}{\sqrt{2}} \sqrt{1 + \frac{\sqrt{2}}{2}} = \frac{1}{\sqrt{2}} \sqrt{\frac{2 + \sqrt{2}}{2}} = \frac{\sqrt{2 + \sqrt{2}}}{2}$$

also
$$\cos \frac{\pi}{16} = \frac{1}{\sqrt{2}} \sqrt{1 + \cos \frac{\pi}{8}} = \frac{1}{\sqrt{2}} \sqrt{1 + \frac{\sqrt{2 + \sqrt{2}}}{2}} = \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2}$$

$$\therefore \frac{2}{\pi} = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2 + \sqrt{2}}}{2} \times \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \times \dots$$

Question 8

(a) (i)

$$ae = \pm 4, \ a = 5, \ \therefore e = \frac{4}{5}$$

Hence, the directrices are $x = \frac{\pm 25}{4}$

(ii)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

$$\frac{2x}{25} + \frac{2y \frac{dy}{dx}}{9} = 1$$

At
$$P(x_1, y_1)$$
, $\frac{dy}{dx} = \frac{-9x_1}{25y_1}$

Required equation:

$$y - y_1 = \frac{-9x_1}{25y_1} (x - x_1)$$

$$9xx_1 + 25yy_1 = 9x_1^2 + 25y_1^2 = 225$$

Note: $P(x_1, y_1)$ lies on the curve $9x_1^2 + 25y_1^2 = 225$

(iii)
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$
At $x = 4$, $y = 0$

$$-y_1 (x_2 - x_1) = (y_2 - y_1) (4 - x_1)$$

$$4(y_2 - y_1) = x_1 (y_2 - y_1) - y_1 (x_2 - x_1) = x_1 y_2 - x_2 y_1$$

(iv) Two equations are: $9xx_1 + 25yy_1 = 225$ and $9xx_2 + 25yy_2 = 225$

$$25y = \frac{9xx_1 - 225}{y_1} = \frac{9xx_2 - 225}{y_2} \quad \therefore 9x(x_1y_2 - x_2y_1) = 225(y_2 - y_1)$$

$$\therefore 9x.4(y_2 - y_1) = 225(y_2 - y_1) \qquad x = \frac{225}{36} = \frac{25}{4}$$

(i)
$$I_n = \int_{1}^{e} (1 - \ln x)^n dx$$

$$= \left[x (1 - \ln x)^{n} \right]_{1}^{e} - \int_{1}^{e} nx (1 - \ln x)^{n-1} \left(-\frac{1}{x} \right) dx$$

$$=-1+nI_{n-1}$$

(ii)
$$I_3 = -1 + 3I_2 = -1 + 3(-1 + 2I_1) = -4 + 6(-1 + I_0)$$

= $-10 + 6 \int_{1}^{e} dx = -10 + 6(e - 1) = -16 + 6e$

(iii)
$$I_{r} = -1 + rI_{r-1}$$

$$\frac{I_{r}}{r!} = \frac{-1}{r!} + \frac{rI_{r-1}}{r!}$$

$$\frac{I_{r}}{r!} = \frac{-1}{r!} + \frac{I_{r-1}}{\left(r-1\right)!}$$

$$\sum_{r=1}^{n} \frac{I_r}{r!} = \sum_{r=1}^{n} \frac{-1}{r!} + \sum_{r=1}^{n} \frac{I_{r-1}}{(r-1)!}$$

$$\frac{I_n}{n!} + \sum_{r=1}^{n-1} \frac{I_r}{r!} = \sum_{r=1}^{n} \frac{-1}{r!} + \sum_{r=0}^{n-1} \frac{I_r}{r!}$$

$$\frac{I_n}{n!} = \sum_{r=1}^n \frac{-1}{r!} + \frac{I_0}{0!} = \sum_{r=1}^n \frac{-1}{r!} + \frac{\int_{-1}^e dx}{0!} = \sum_{r=1}^n \frac{-1}{r!} + \frac{e}{0!} + \frac{-1}{0!} = e - \sum_{r=0}^n \frac{1}{r!}$$